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SUMMARY AND INTRODUCTION 

This repo r t  contains r e s u l t s  o f  a fol low-on e f f o r t  on the NASA Advanced 
Transport Operating Systems (ATOPS) Techno1 ogy Studies cont rac t  ( NASl-16202). 
This previous task, sponsored j o i n t l y  by NASA and the FAA, was a study of 
curved, descending approaches using the microwave landing system (Kef. 1 1. 
The major goal o f  the present study i s  t o  general ize the l a t e r a l  and v e r t i c a l  

guidance algor i thms t o  be appl icable t o  any desired approach path def ined by 
waypoints spec i f ied  i n  a general form, ra ther  than being r e s t r i c t e d  t o  the 
p a r t i c u l a r  approach paths prev ious ly  studied. 

Waypoint data f o r  the  Washington National r i v e r  approach was used w i t h  the  

general ized guidance laws i n  an MD-80 simulat ion program. 
program cons is t  o f  performance data, which included l a t e r a l  and v e r t i c a l  
t rack ing  errors ,  bank and p i t c h  angle time h is to r ies ,  and ground t rack  
t ra jec to r ies .  
a p i tchover  t o  a 3 deg g l ides lope dur ing the f i r s t  turn. 

Results from t h i s  

The r i v e r  approach was defined by seven waypoints and contained 

Ten cases were simulated f o r  the r i v e r  approach. Four cases s ta r ted  a t  en t r y  
t o  the approach and included two tu rns  and the pitchover. 

run t o  study the e f f e c t s  o f  MLS noise, steady winds, and a speed change. The 
remaining s i x  cases contained fou r  turns a t  a constant g l ides lope down t o  100 
f e e t  a l t i t u d e .  
winds, turbulence, windshear, and a l igh t -we igh t  conf igurat ion.  

These cases were 

These runs provided data on the  e f f e c t s  o f  MLS noise, steady 

1 



CONCLUSIONS AND RECOMMENDATIONS 

The goal s of the present study ( t o  general ize  previously devel oped guidance 
a1 gori thms and to  generate performance data for  a particular simulated 
approach) have been achieved. 
and a method developed tha t  allowed almost any approach path to  be specified. 
I t  became necessary t o  completely reformulate the 1 ateral  guidance a1 gori  t h m  
t o  accomnodate this new path definition concept. 
vertical algorithm were required. 
w i t h  this new path definition. 
generated and were w i  t h i  n acceptable 1 imi ts. 

A general i zed waypoi n t  database was establ i shed 

Only minor changes to  the 
These revised guidance laws do work well 

Tracking errors  f o r  ten different  cases were 

There are  two major areas tha t  have been identified fo r  potential follow-on 
tasks. 
evaluations. For the departure studies, the following specific tasks are 
recommended : 

They are  missed approach/preci sion departures and fixed-base simulator 

- Develop path definit ion for  departures u s i n g  only the back azimuth 
angle and range information. 

- Establ ish la teral  and vertical guidance algorithms that  can be used 
w i t h  b o t h  m i  ssed approaches and preci sion departures. 

- Simul a te  the m i  ssed approach/preci si on departures and eval uate system 
tracking performance. 

For  the simulator evaluations, preliminary analytical e f fo r t s  indicated the 
following tasks: 

- Formulate studies t o  establish system architecture w i t h  regard to  a 
fixed-base simulator. 

- Coordi nate MLS/gui dance computer hardware/sof tware interfaces. 

- Develop a guidance computer i n  connection w i t h  real time simulator 
implementation. 



MLS OPERATIONS 

Basica l ly ,  the  MLS consis ts  o f  ground stat ions, an airborne receiver,  and a 
d isp lay/contro l  panel f o r  the p i l o t .  A type o f  operation, c a l l e d  an ILS 
"1 ook-a1 i ke" , i s where conventional approaches woul d be f 1 own u s i  ng the  MLS 
equipment. 
t h i s  mode since i t  requi res minimum airborne equipment changes. To r e a l i z e  

the add i t iona l  benef i t s  o f  MLS over ILS, an on-board guidance computer i s  
added t o  process s teer ing  s ignals  f o r  complex, curved paths. A database of 
waypoints (distances, a l t i t udes ,  speeds) i s  a lso requi red as p a r t  o f  the 

system. The guidance computer uses the MLS s ignals  and waypoint data t o  

generate s teer ing  commands f o r  landing and departures. These commands can be 
used t o  d r i v e  a f l i g h t  d i r e c t o r  f o r  p i lo t - in - the- loop operation. A l ternate ly ,  

the s ignals  can d r i ve  the a u t o p i l o t  d i r e c t l y  t o  provide a u t o f l i g h t  operation. 
This l a t t e r  mode i s  the  one f o r  which performance data were generated i n  the  
present study. 

I n i t i a l l y ,  ex i s t i ng  a i r c r a f t  can be reconfigured t o  operate i n  

COVERAGE VOLUME 

Figure 1 i s  a sketch o f  the e x i s t i n g  ILS coverage character ized by i t s  narrow 
beam. Signal s f o r  1 andi ng ( provided by 1 oca1 i zer and g l  i desl ope t ransmi t te rs )  
are ava i l ab le  only w i t h i n  the ind ica ted  volume. 
represents the MLS coverage showi ng the possi b i  1 i ty o f  curved paths, segmented 

I n  contrast ,  Figure 2 

g l  i desl ope, path 1 engthening,as we1 1 as ILS 1 ook-a1 i ke approaches. 
coverage i s  provided by an azimuth t ransmi t ter  (AZ), an e leva t ion  t ransmi t te r  
(EL), and prec is ion  distance measuring equipment (DME/P). Both the AZ and EL 
antennas rad ia te  scanned beams t o  provide angular coverage i n  the  ind ica ted  

volume. The DME/P (colocated w i t h  the AZ equipment) i s  omnidirect ional  and 

provides p rec i s ion  range informat ion t o  the a i r c r a f t .  

Thi s 

Also shown i n  F igure 2 i s  the coverage f o r  takeof f  and go around. 

coverage i s  provided by a back AZ antenna and the same DME/P as used f o r  
landing. E levat ion angle in format ion i s  no t  ava i lab le  f o r  takeof f  o r  go 
around. 

This 



APPROACH GEOMETRY 

Angle and range var iab les f o r  landing are defined i n  Figure 3. 
equipment i s  located 1000 f e e t  from the  end o f  the runway (a 10,000 f e e t  
runway was assumed f o r  t h i s  study). 
400 f e e t  from the runway center l ine,  bu t  t o  s imp l i f y  the s imulat ion it was 

assumed t o  be a t  the coordinate o r ig in .  

The AZ-DME/P 

The EL t ransmi t te r  i s  a c t u a l l y  located 

The pos i t ion  o f  the  a i r c r a f t  MLS antenna r e l a t i v e  t o  the ground equipment can 
be ca lcu lated from eAZ ,  EL , and RDME. For the assumed rectangular 
coordinate system, the  fo l l ow ing  equations r e s u l t :  

2 2 2 2  
X h  = d COS BEL - COS2 eEL(RDME - d sin eEL)  - 

I n  Eqn(E), the term d 
theAZ/DME locat ion.  
so hl=-zI;! . I n  a l a t e r  section, these p o s i t i o n  coordinates w i l l  be 
corrected f o r  the o f f s e t  o f  the a i r c r a f t  MLS antenna from the CG. 

i s  the  distance from the ground coordinate center t o  
A l t i t u d e  t o  the CG i s  p o s i t i v e  f o r  the geometry shown, 

rn 



APPROACH PATH DESCR I PT IONS 

WASHINGTON NATIONAL R I V E R  APPROACH 

S ix  waypoints, and the  g l i d e  slope in te rcept  po int ,  were defined f o r  the 
Washington National r i v e r  approach. 
Figure 4. 

simulated f l i g h t  would be a t  a constant a l t i tude .  
gl ideslope i s  specif ied a t  ENTRY. 
Table 1. 
could be chosen f o r  the  same waypoint sequence. 

These waypoints are i d e n t i f i e d  by name i n  
One add i t iona l  waypoint was added so the  f i r s t  p a r t  o f  the  

P i t c h  over t o  a 3 deg 
Coordinates f o r  the  waypoints are given i n  

The r a d i i  shown were used i n  the simulat ion, although other values 

The numbered waypoints i n  Figure 4 are the p o i n t s  o f  t u r n  en t ry  and t u r n  e x i t  

computed by the algori thms f o r  c i r c u l a r  t rans i t ions .  Waypoint 1 was selected 
a t  an a l t i t u d e  o f  100 feet ,  waypoints 2 and 3 de f ine  the  end and beginning o f  
the  t u r n  a t  FAF18, etc. Waypoint 14 was a r b i t r a r i l y  selected as the  s t a r t i n g  
p o i n t  f o r  t h e  simulated runs. These 14 waypoints are used by the l a t e r a l  and 
v e r t i c a l  guidance laws t o  def ine the  desired approach path. The d e f i n i t i o n  o f  
these waypoints and t h e i r  numerical values w i l l  be discussed i n  a l a t e r  
section. 
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GUIDANCE CONCEPTS 

x ' ( i s - l )  - x ( i , )  

y ' ( i s -2 )  - y ( i s - l )  

x ' ( i s -2)  - x ( i s - l )  
A~ = tan-' rad 

A3 = 7~ + I R ( i s - l )  (Al-A2) rad  

where: I R ( i s - l )  = +1 for  a r ight hand turn 
= -1 for a l e f t  hand t u r n  

6 

Although the present study uses the same basic MD-80 simulation program a s  
reported i n  Reference 1 ,  the la te ra l  and vertical subroutines were completely 
rewritten. T h i s  revision was due t o  the generalization of the previous 
la te ra l  and vertical guidance laws. A maximum of 20 waypoints can now be 
accommodated and the approach can be simulated. 
these guidance concepts are discussed i n  detail  i n  the following sections. 

Flow charts and equations f o r  

WAYPOINT TRANSFORMATION 

Consider waypoints that  are defined as the end points o f  st raight- l ine 
segments or legs. 
t ransi t ion between waypoints, then the beginning and end of the turn ( fo r  a 
constant speed approach) a re  defined. 

If a radius i s  chosen fo r  the c i rcu lar  par t  of the 

These two points are  uniquely 
determined by knowing three adjacent waypoints. Figure 5 depicts a general 
three-point geometry. The coordinates shown are  i n  the ground plane, where an 
x-y coordinate pair  i s  defined fo r  each waypoint. The numbering o f  waypoints 
was chosen i n  decreasing order as  the approach progresses. 
W P ( i s ) ,  WP'(is-l), and WP'( is-2)  are  the three i n p u t  points. 

Waypoi nts 
The 

integer is ident i f ies  the par t icular  s e t  of points and is used i n  the 
transfornation calculations. The points WP(is-l ) and WP(is-2) are the 
ones to  be determined. 
easi ly  determined from the i n p u t  points. 

Three angles A1, A2, and Ag of Figure 5 a re  



The desi red po in ts  on the c i r c u l a r  arc tha t  are tangent t o  the adjacent legs  

are ca lcu la ted  from: 

x ( i s - l )  = x ' ( i s - l )  - R ( i S - l )  cos Al/tan (A3/Z) 

y ( i s - l )  = y ' ( i s - l )  - R ( i S - l )  s i n  Al/tan (A3/Z)  

x ( i s -2 )  = x ' ( i s - l )  + R( iS-1) cos A2/tan (A3 /2 )  

y ( i s - 2 )  = y ' ( i s - l )  + R ( i S - l )  s i n  A2/tan (A3/Z)  

The above process i s  repeated fo r  each s e t  o f  three adjacent waypoints u n t i l  
the  t ransformat ion i s  complete. Results f o r  the r i v e r  approach are shown i n  
Table 2. 
l e g  i s  calculated. 
a l t i t u d e  vs the  l eng th  o f  each leg. 

simply a continuous l i n e  a t  the 3 deg glideslope. 
were computed i n  t h i s  manner. 

Once the  coordinates i n  the x-y plane are known, the length  of each 

A l t i t udes  a t  each waypoint are computed by p l o t t i n g  
For the r i v e r  approach, t h i s  p l o t  i s  

A l t i t udes  shown i n  Table 2 

LATERAL GUIDANCE EQUATIONS 

The 1 a te ra l  guidance geometry was establ i shed by assuming the approach 

sequence contained a l i n e a r  l e g  fol lowed by a c i r c u l a r  leg. A general two-leg 
segment i s  shown i n  F igure 6. 
designation. 
s t a r t s  a t  i t s  max mum value (14 fo r  the r i v e r  approach) and i s  decreased by 2 
u n t i l  is=2. 
tip118 i n  F igure 4 . 
f o r  the l a t e r a l  guidance subroutine. 
a re  programmed i n  the  subroutine as explained i n  the fo l low ing  sections. 

Each l e g  i s  i d e n t i f i e d  by the waypoint 
Leg is l i e s  between WP(is) and WP(is-l). The in tege r  is 

Legs 2 and 1 are both s t ra igh t - l i ne  segments (between WP(2) and 
The flow cha r t  i n  f i gu re  7 shows the general program f low 

Reference i s  made t o  the equations t h a t  

A1 ong-Track Distance Computations. 

Each l e g  distance i s  computed by the l a t e r a l  guidance subroutine, which a lso  
ca lcu la tes  the distance t o  go along the curved path (measured i n  the x-y 
plane). 
c i r c u l a r  arcs are a l so  computed f o r  use i n  the r o l l  s teer  ng command. 

This distance i s  computed as a funct ion o f  time. Centers o f  the 
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F i r s t ,  the desired course angle, JID ( i s ) ,  i s  ca lcu lated:  

Y( is -1 )  - Yb,) 
QD(is)  = tan-’ r a d  

x ( i s - l )  - x(i,) 

where 0 5 QD(is)  < 2.rr 

Next, the  l i n e a r  l e g  distance i s  computed, fo l lowed by the to ta .  chord length  
f o r  the  e n t i r e  c i r c u l a r  leg. The arc length f o r  the  c i r c u l a r  l e g  i s  computed 

from t h i s  chord length:  

A r c  center  f o r  the curve s t a r t i n g  a t  WP(is-l) i s  found from: 

x c ( i s - l )  = x ( i s - l )  - I R ( i s - l )  R ( i s - l )  s i n  Jr D S  (i ) 

y c ( i s - l )  = y ( i s - l )  + I R ( i s - l )  R ( i S - l )  cos QD(is) 

Leg distances f o r  l egs  is and is -1  ( i nc lud ing  is=2)  are computed from: 

Total  distance t o  go i s  found by summing each l e g  distance f o r  is < 2. 



A quant i ty,  D1, t h a t  w i l l  be used i n  computing the distance t o  go as a 

func t i on  o f  t ime i s  i n i t i a l i z e d  a t  t h i s  point, and DTG i s  i n i t i a l l y  set  

to T 
D~~ 

Latera 

D, = T 
D~~ 

D~~ 
DTG = T 

Complementary F i l t e r .  

Lateral  p o s i t i o n  coordinates from the MLS, equations (1) and ( 2 1 ,  are 
processed using complementary f i l t e r s .  

used i n  Reference 1. 
I p o s i t i o n  coordinates ( x;,ym 

a re  repeated below: 

These f i l t e r s  are the same as those 

) and the f i l t e r e d  r a t e  coordinates ( zm,im 
f o r  completeness, the equations f o r  the f i l t e r e d  

A A  

A 

- x '  - 1  

'X - 'rn m 
A 

E = Y; - Y; Y 

I _  < 500 f t  

I _  E I < 500 ft 
Y 

A 1 
x AT m- 

A A 

yl;l = yl;l + AT 

'm 0 . 1 2 9 ~ ~  + 0 . 1 2 5 ~ '  1- X 
h A - - 
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In the above equations, the minus  subscript denotes the f irst  past value o f  
the vari ab1 e. 

The ground track angle, 4JG , i s  computed from the rate  estimates. 
position estimates are corrected fo r  the MLS antenna being displaced 
from the a i r c ra f t  CG longitudinally and x 2  f e e t  vertically:  

The 

1 
f ee t  

h A 

A A 

y, = y; - R s i n  $G 1 

0 < 4~~ 1. 360° 

Linear Leg Steeri ng Comnands. 

Path devia t ion  nomal to the l inear  ley is  calculated, and this error  signal 
i s  used i n  forming the rol l  steering command. 
position ( x y i s  shown w i t h  a tracking error  Ay . The following 
equations define the roll steering command, GSTR , used t o  maintain track 
along tile linear leg. 

In Figure 8, the a i r c r a f t  
A A  

m y  m 

A 
A 

AY = [  y, - y( i s -111  COS yD(is- l )  - [ x ,  - x ( i s - l )  I sin QD(is-l)  

D I  = [  D - Ay2 1 
(31) 

2 % 

10 

n 

h = h; - R sin 8 + R, cos 8 m 1 

Ground speed and the aistance t o  the next waypoint are calculated from: 

Linear Leg Steeri ng Comnands. 

2 % 
D I  = [  D - Ay2 1 

10 

Path devia t ion  nomal to the l inear  ley is  calculated, and this error  signal 
i s  used i n  forming the rol l  steering command. 
position ( x y i s  shown w i t h  a tracking error  Ay . The following 
equations define the roll steering command, GSTR , used t o  maintain track 
along tile linear leg. 

In Figure 8, the a i r c r a f t  
A A  

m y  m 



Turn  Anticipation. 

Logic i s  used to  ant,;ipate the t u r n  before the a i r c r a f t  gets to  ,,,e nex 
waypoint. 
t ransi t ion t o  the c i rcu lar  leg. 
second lead time. 
the roll steering command t o  a ramp to  start the turn. 
p o i n t  1 i n  Figure 9. 
f igure,  the roll steering command switches to  the circular  tracking signal. 
As this switching occurs, the variable D1 i s  reset  t o  the remaining distance 

me. These variables 
of calculations. 

T h i s  action was found necessary t o  reduce the tracking er ror  d u r i n g  

As the a i r c r a f t  nears the next waypoint, the logic switches 
A distance, DAY i s  computed based on a four 

T h i s  event occurs a t  
When the a i r c ra f t  passes the line a t  point 2 i n  the 

to  go. Also, the quantity D I  
a re  now re i  n i  t i  a1 i zed properly 

s s e t  t o  zero a t  this t 
f o r  use i n  the next s e t  

C i  rcul a r  Leg Steering Commands. 

Figure 10 shows the tracking error ,  AR , dur ing  the turn. 
equations define the rol l  steering command used fo r  this leg. 
course angle, +R , defines the desired path direction d u r i n g  the turn. 
used to  calculate the deviation from the ground track angle, Eqn (351, which 
i n  t u r n  defines the e r ror  rate term A k  . 

The following 
The reference 

I t  is  

AR = I R ( i s - l )  - x,(iS-1))' + (jm - yc( iS- l ) ) '  ]"I (36)  



AR = vG sin ( q ,  - qR) 

..2 

%TR R s 32.2 R( iS-1)  - GL3AR - GL4AR 
"G 

= I ( i  -1) tan- '  

where GL3 = 0.01 and GL4 = 0.1 

(37) 

(38) 

(39) 

The distance along the circular  leg is  computed next. 
measured from the l a s t  waypoint t o  the point projected along the desired 
c i rcu lar  arc (Figure 10) .  
1 eg d i  stance. 

T h i s  distance, DI, i s  

The total  distance t o  go i s  then computed from this 

[ R ( i S - l )  + A R I 2  + R 2 ( i s - l )  - C 2 
A = cos-' rad  

2[R(iS-1)  + A R ]  R(iS-1) 

D I  R ( i S - l ) A  

DTG = D1 - D I  

T u r n  Termination. 

As the aircraf t  approaches the next waypoint, logic i s  used t o  lead the 
transit ion t o  the l inear  leg similar t o  the t u r n  anticipation. 
Figure 11 i s  calculated u s i n g  a four second lead time. A t  this p o i n t ,  a 
signal i s  computed based on the next ( l i nea r )  leg. T h i s  signal has the same 
form as  t h e  steering cormand, Eqn (33). 
Eqn (371, i s  sti l l  being used t o  command the bank angle d u r i n g  this time. 
p o i n t  2, the l inear  signal and circular  steering signals are equal i n  
magnitude. 
Eqn (33). 
When point 3 is  reached, the appropriate variables are re ini t ia l ized for  the 
1 i near leg, and  s teer i  ny continues usi ng Eqns (31 ) - (  34). 

Poin t  1 i n  

The circular  steering signal, 
A t  

A t  this time, the steering command i s  switched t o  the l inear  one, 
Abrup t  changes i n  the comniand signal are avoided by this logic. 



VERTICAL GUIDANCE EQUATIONS 

General izat ion o f  the v e r t i c a l  guidance a1 g o r i  thm discussed i n  Reference 1 was 

made dur ing t h i s  study. 
e r r o r  t o  be computed by knowing only  the parameters t h a t  def ine the  cur ren t  

l e g  i n  which the a i r c r a f t  i s  f l y i n g .  A constant g l ides lope can be def ined fo r  

each leg, o r  one g l ides lope change can be executed per  leg. 

The concept employed al lows the v e r t i c a l  t rack ing  

One way t o  v i sua l i ze  t h i s  concept i s  t o  consider "s t ra igh ten ing  out"  the  
approach path t o  l i e  i n  a s ing le  plane. The a l t i t u d e  i s  displayed vs the 
distance t o  go as depicted i n  f i g u r e  12. A t yp i ca l  l e g  i s  shown as i d e n t i f i e d  

by waypoints WP(a) and WP(R-1). A l t i tudes  a t  each waypoint are known, and the 
distance DI i s  computed from Eqn (32) o r  Eqn (40) depending on whether a 

l i n e a r  o r  c i r c u l a r  l e g  i s  the cur ren t  leg. 
i t  two gl ideslopes. 

s i t u a t i o n  i n  f i g u r e  12 where the a i r c r a f t  i s  below the f i r s t  g l ides lope f o r  

l e g  R . 

Each waypoint has associated w i th  
Consider the (They may have equal o r  d i f f e r e n t  values.) 

The desired a l t i t ude ,  hd, f o r  t h i s  g l ides lope i s  computed from 

hD = h(R) - DI tan GS(R,l) (42)  

A f t e r  the a i r c r a f t  has progressed t o  the reg ion o f  the  second g l ides lope as 

shown i n  F igure  13, the  desired a l t i t u d e  i s  given by 

h D  = h(R-1) + [ DL(R) - D I ]  tan GS(R,2) 

Deviat ion from the desired a l t i t u d e  i s  defined by 

A 

Ah = hD - hm 

( 4 3 )  

(44) 

The e r r o r  r a t e  s ignal  i s  der ived f r o m  rate and accelerat ion signals. 
F igure 14 i s  the block diagram t h a t  contains a complementary f i l t e r  t h a t  

provides t h i s  e r r o r  signal. 
ava i l ab le  i n  the MD-80 au top i lo t .  

r a t e  e r ro r ,  { 
equiva lent  t o  the continous system of Figure 14: 

f i l t e r e d  a l t i t u d e  rate,  hF , i s  a s ignal  
It i s  used t o  develop f i l t e r e d  a l t i t u d e  

A 

, as def ined by the  fol lowing d i f fe rence equations t h a t  are 



A 

Azl = C1 Az,- + C 3 h  

Az2 = C1 Az2- + C 2 (  Ah - A h - ]  

Ah = A z l  + Az2 
r' 

(45) 

C = e  -AT/T ( T  = 4.0 sec)  
1 

As shown i n  Figure 14, the pitch command signal t o  the autopilot, BCE , i s  
composed o f  three components. 
the a1 t i  tude e r ror  and rate signals: 

The pitch steering signal i s  a combination of 

A 

where G v 2  = 0.0588 and G v 4  = 0.294 

An integral term, BcI , i s  used on the Ah signal, and a predict term, Bp , i s  
used when switching from one glideslope t o  another. 
computed from the vertical f l i g h t  path angle, y , a t  the time of switching. 

T h i s  predict term is 

eCI - - eCI + GV3AhAT - 
where GV3 = 0.00294 

-1 h F  y = t a n  - (49)  

(50) 

Switching t o  the second glideslope i s  determined by logic based on the second 
glideslope parameters. 
tracking the f i r s t  glideslope. When this signal changes s ign ,  switching 
occurs w i t h  a smooth transit ion to  the second glideslope. 
for  the vertical guidance subroutine i s  shown i n  Figure 15. 

T h i s  signal i s  computed while the a i r c ra f t  i s  s t i l l  

The flow diagram 
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SPEiD CONTROL 

Programmed speed and f l a p  changes were simulated d u r i n g  leg 10 of the r iver  
approach. 
speea change would be on the l inear  leg a f t e r  the second t u r n .  
the speed transient s e t t l e s  out before the next t u r n .  

T h i s  choice was somewhat arbitrary,  b u t  i t  was made so tha t  the 
The resu l t  is  

Speed control i s  simply implemented by commanding a step f lap change to  the 
flap servo, and a step speed change t o  the autothrott le.  A l l  existing logic 
ana limits i n  the MD-8U autothrott le remain unaltered. The resul t  i s  a flap 
change from 15 deg t o  the desired setting of 40 deg a t  the max servo rate. A 

speed change from 165 knots t o  the target speed of 140 k n o t s  accompanies this 
flap change. 

1 5  



MD-80 SIMULATION PROGRAM 

A modif ied version o f  the 

SIMULATION DESCRIPTION 

MU-80 batch simulat ion program was used f o r  the 

r i v e r  approach studies, where the ILS subroutines were rep1 aced w i t h  coding 
t h a t  simulated the MLS angle and range signals. 

v e r t i c a l  guidance and speed change were developed and added t o  the program t o  
provide a closed loop simulat ion capab i l i t y .  
o f  the basic elements o f  t he  simulation. 
the MD-80 au top i l o t  accept commands from the MLS guidance computer. 

comnands generated w i  t h i  n the autopi 1 o t  provide the desi red 1 a te ra l  and 
v e r t i c a l  path t rack ing  contro l  f o r  the approach. 

Routines f o r  l a t e r a l  and 

Figure 16 shows the re la t i onsh ip  
The r o l l  and p i t c h  inner  loops o f  

Surface 

Another mode o f  operat ion i s  possible where the a u t o p i l o t  i s  replaced w i t h  a 
f l i g h t  d i rector.  A p i l o t  would then f l y  the MLS approach and would make the 
necessary l a t e r a l ,  v e r t i c a l ,  and speed maneuvers. A simulator i s  planned t o  

be used i n  fu tu re  p i lo t - in- the- loop evaluat ions o f  MLS approach procedures, 
p i l o t  displays, and path t rack ing  performance. 

r e p o r t  discuss some aspects o f  hardware i n te r faces  and software requirements 
o f  the fixed-base simulator. 

The l a s t  sections o f  t h i s  

WIND AND TURBULENCE MODELS 

Included i n  the s imulat ion are opt ions f o r  winds, whose magnitudes are a 
funct ion of  a1 ti tude, and f o r  turbulence as a d d i t i v e  terms t o  the winds. 
f a c t o r  t h a t  i s  a func t i on  o f  a l t i t u d e  i s  denoted W and i s  defined by 

The 

w = 0.43 l o g  h + 0.35 (52) 

where h i s  the a l t i t u d e  i n  feet. 

wind magnitudes i n  knots) when the a i rp lane  i s  on the ground are used t o  
compute the three wind components a t  a1 ti tude: 

Input  values f o r  S,, , and S,  ( the 
sY 

wx = w sx 
w = w s y  
wz = w sz 
Y 

(53) 



Turbulence i s  a random var iab le  t h a t  may be added t o  the above winds. 

noise i s  passed through f i r s t  order f i l t e r s  whose parameters are funct ions o f  
the  wind components as shown i n  Figure 17. 

White 

Outputs of the f i l t e r s  are denoted 

V and W and are used t o  fo rm the t o t a l  simulated winds: 
9 

9 
WTx = w, + u 
WTy = My + vg 
WTz = w, + w 

9' 

9 
A i r c r a f t  performance cha rac te r i s t i cs  1 i m i t  wind components a t  touchdown t o  
maximum values o f  25 knot  headwinds, 10 knot ta i lw inds,  and 15 knot  crosswinds. 

W lNDSHEAR 

One case was simulated i n  which a severe windshear was present dur ing the 
f i n a l  approach a t  Washington. 
i nc iden t  o f  1973. 

was modi f ied f o r  s imulat ion purposes and appears i n  Table 3. 
i n t e r p o l a t i o n  was used t o  def ine the shear between the a l t i t u d e s  l i s t e d .  

This shear was based on the Logad Ibe r ia  
The data (publ ished by Av ia t ion  Week i n  1975 (Keference 2 ) )  

L inear  

MLS NOISE MODELS 

Angle and range s ignals  as output from the MLS receiver  w i l l  conta in  noise. 

For s imulat ion purposes, add i t i ve  noise has been included i n  the azimuth, 
e levat ion,  and DME range variableseAZ ,eEL ,&RDMErespectively. The variables, 
as used i n  Equation (1 )  - ( 3 ) ,  were modif ied t o  inc lude t h i s  a d d i t i v e  noise: 

The In te rna t iona l  C i  v i 1  Av ia t ion  Organization (ICAO) has spec i f ied  noise 
l e v e l s  f o r  which the  MLS must meet. These levels ,  as def ined by o r  95% 
p r o b a b i l i t y  values, are given i n  Table 4. 
fo l low ing  e r r o r  (PFE) and the  h igh frequency cont ro l  motion noise (CMN) are 

spec i f i ed  f o r  AZ, EL, and DME/P. 

Values fo r  the low frequency path 



The ICAO-specified noise levels,  i f  actually present i n  the MLS signals, would 
result i n  unacceptable a i r c r a f t  act ivi ty  when coupled to  f l i g h t  control 
systems capable o f  accurate path control. 
the noise is less.  Consequently, assumed levels of reduced value were 
simulated. These reduced levels  were based on actual f l i g h t  t e s t  data 
performed i n  France i n  1983 (Reference 3 ) .  
t o  define the gains and frequencies shown i n  Figure 18. For siniulation 
purposes, 10 or  68% probability values are used. The reduced values shown i n  
Table 4 were used to  obtain the noise model of Figure 18. Azimuth and 
elevation levels are  significantly lower than the ICAO values, whereas the DME 
1 eve1 remains unchanged. 

F l i g h t  measurements indicate tha t  

Results of these t e s t s  were used 

During the course of the present study, two baseline cases were run w i t h  no 
noise fo r  comparison purposes. A l l  other cases contained the reduced noise. 
For cer t i f icat ion purposes, the ICAO values must be used. However, i t  was 
f e l t  tha t  noise models, based on actual f l i g h t  test  data, would yield resu l t s  
representing levels  encountered i n  actual practice. 
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SIMULATION RESULTS 

Two se ts  of runs were executed f o r  the river approach. 
runs simulated entry to  the approach a t  approximately 3000 f e e t  a l t i tude.  
the second se t ,  six runs simulated the final approach s tar t ing a t  1700 f e e t  
and ending a t  100 feet .  Pitchover and a speed change were programed a t  the 
higher a l t i tude  t o  study the i r  e f fec ts  on tracking. 
par t icular  in te res t  fo r  the second s e t  of runs i n  the presence of turbulence 
and shear. 

In the f i rs t  se t ,  four 
In 

Tracking accuracy was of 

ENTRY APPROACH RESULTS 

Results f o r  the i n i t i a l  path approach are presented fo r  four cases as defined 
i n  Table 5. 
leg 10  a f t e r  WP(10). 
degree glideslope occurs a t  ENTRY. 
maintained. 

Specifically,  the path s t a r t s  a t  WP(14) (Figure 4) and ends on 
Leg 14 i s  a t  a constant a l t i tude.  Pitchover to  a 3 

Thereafter, a constant 3 degree descent i s  

Case 1. 

T h i s  i s  a baseline case w i t h  no noise or other disturbance. 
history as shown i n  Figure 19 has the waypoints identified along the time 

Bank angle time 

axis. N 

T u r n  ant 
the time 
steering 

t e  t ha t  the bank angle s t a r t s  t o  change before WP(13) and WP( 

cipation accounts fo r  this effect  since the waypoints are  def 
of switching from the l inear  steering command t o  the c i rcu lar  
command. 

1 ) .  
ned a t  

Pitchover occurs a t  20 sec, with the p i t c h  response shown in Figure 20. 
are pitch corrections a t  each waypoint t o  account for  the tu rn ing  a i r c ra f t .  
As expected, a smooth transit ion between waypoints occurs, accompanied by a 
smooth pitchover t o  the desired glideslope. 
no par t icular  problenis t o  the guidance a1 gori thms .  

There 

This par t  of the approach poses 

The la te ra l  tracking er ror  i s  shown i n  Figure 21. 
trace are due t o  switching of the steering signal a t  each waypoint. T h i s  plot  
i s  a composite of the error ,  Eqn (311, and the AR error,  Eqn (36). These 
errors ,  and the i r  respective rates, are used t o  define the la teral  steering 
command. Since this case has no disturbances, these errors are inherent i n  

Discontinuities i n  this 
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the XI-80 and are due to  
limits i n  the autopilot. 

the a i r c r a f t  dynamics, autopilot  inner loops, and 

Figure 22 shows a time h story of the vertical tracking error. 
the a i r c ra f t  i s  about 65 f ee t  below the desired al t i tude.  T h i s  t ransient  
s e t t l e s  out t o  w i t h i n  a few fee t  fo r  the remainder of the run ,  w i t h  some 
correction d u r i n g  the turns. 
After transients, this ra te  i s  close to  the -12.4 feet/sec nominal value for  
this descent. 

A t  pitchover, 

Figure 23 i s  a plot  of vertical descent rate.  

A computer-generated plot of the ground track for  Case 1 i s  shown i n  Figure 
24. The dashed l i ne  connects the named waypoints and the s o l i d  l ine  is  the 
ground track. A t  the scale shown, the tracking errors  are not obvious. T h i s  
type of p l o t  will be useful f o r  cases w i t h  wind and turbulence when the track 
i s  plotted us ing  an expanded scale. 

Case 2. 

Resul t s  for the MLS noise case d i f f e r  from the bdseline primarily i n  the 
vertical plane. Lateral tracking i s  minimally affected. (See Figures 25 and 
20.1 

er ror  (Figure 28) which contains the noise components. 
t ha t  drawing conc usions us ing  a single noise r u n  i s  not valid. 
however, i n  pitch response a f t e r  the turns does show approximately a - +0.5 
degree dispersion about the nominal. 
dispersion d u r i n g  the same period. Vertical descent rate,  Figure 29, has a 
- +2 f t / s ec  spread about nominal a f t e r  the pitchover to  3 degrees. 

Pitch respo se (Figure 27) shows the e f fec t  of the vertical tracking 
I t  should be noted 

The trend, 

Vertical tracking error shows a - +20 foot 

Case 3. 
A headwind and a crosswind were simulated as a function of a l t i tude  for  this 
case. The magnitudes a t  threshold were 25 knots f o r  the headwind and 15 knots 
f o r  the crosswind. A t  the i n i t i a l  a l t i tude  of 3146 feet ,  these values 
modified by Eqn (52)) become 46 and 28 knots, respectively. 

as 

Tne bank angle time history of Figure 30 shows a smaller angle achieved dur ing  
the f irst  turn (between WP(13) and WP(12)). T h i s  reduction i s  a resul t  of the 
decreased ground speed due to  the wind. 

had occurred a t  the end of the f i r s t  t u r n  a s  compared to  the no-wind case. 
About a 30% reduction i n  this speed 

20 



Without wind, a 50 f o o t  e r r o r  t o  the l e f t  o f  the  desired t rack  developed a t  
the  end of the f i r s t  t u r n  (F igure 26). 

Since the  bank angle was smaller w i t h  these p a r t i c u l a r  winds, the t rack ing  
e r r o r  was ac tua l l y  l e s s  (15 f e e t )  because the  a i r c r a f t  d i d  no t  t u r n  as sharply 
(F igure 31). Had the  wind d i r e c t i o n  been reversed, the  opposite s i t u a t i o n  
would have occurred. Tracking e r ro rs  are very dependent on the  r e l a t i v e  wind 
d i rec t i on ,  and i n  some cases the e r ro rs  are reduced wh i le  i n  o ther  cases they 
are increased. A t  t he  end o f  the  second t u r n  (WP(lO)), the  wind case shows a 
smaller e r r o r  than the  no-wind case. 
between the  f i r s t  and second turns. 

favorab e t o  cause the  a i r c r a f t  t o  t rack  more c losely .  

A 40 degree course change had occurred 
Consequently, the  wind d i r e c t i o n  was 

This p a r t i c u l a r  wind cond i t i on  was ac tua l l y  selected f o r  the f i n a l  approach 

cases. 
i s  a worst-case condi t ion.  

There i s  a r e s t r i c t e d  area near WP(5) and a crosswind from the  r i g h t  

Case 4. 

Th is  l a s t  case f o r  the  i n i t i a l  approaches i s  a programmed speed change and a 
con f igu ra t i on  change. 
i s  15 degrees. On l e g  10, the  speed i s  reduced t o  140 knots and the  f l a p s  are 
extended t o  40 degrees. 
comnanded angle because of the higher speed (F igure 32). Both tu rns  occur a t  
165 knots. 

compared t o  the  constant speed case, whereas the v e r t i c a l  t rack ing  e r r o r  i s  
about the  same. 
seconds, and the speed change i s  smooth (F igure 34). 

I n i t i a l l y ,  the  speed i s  165 knots and the  f l a p  s e t t i n g  

The major e f f e c t  on bank angle i s  t o  increase the  

The l a t e r a l  t rack ing  e r r o r  (Figure 33) i s  general ly smaller as 

The speed and f l a p  change commands occur s l i g h t l y  before 80 

TERMINAL AREA APPROACH RESULTS 

Results f o r  the  remaining s i x  cases as defined i n  Table 5 are presented. Fo r  
these cases, the  i n i t i a l  p o s i t i o n  of the a i r c r a f t  i s  on l e g  10 and descending 
along a 3 degree gl ideslope. 
approach. Two add i t iona l  e f fec ts  studied f o r  these cases are the a d d i t i o n  o f  

turbulence t o  the steady winds and a windshear p r o f i l e .  

Four turns are executed dur ing t h i s  f i n a l  
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These six cases were simulated down to  a 100-foot decision h e i g h t .  
point, the tracking errors were recorded and the speed er ror  noted. 
a re  shown , i n  Table 6. 

A t  this 
Results 

I t  m u s t  be pointed out tha t  results for  the cases 

few seconds apart. Consequently, the turns d u r i n g  this time are almost an 

containing noise or  turbulence are  random i n  nature. 
picture, one shou ld  process many runs to  obtain a s t a t i s t i ca l  dispersion. 
Time d i d  n o t  permit this processing dur ing  the present study. 
way of assessing performance of random disturbances i s  t o  compare time 
his tor ies  of the various cases. 

To obtain an accurate 

An a l ternate  

Relative dispersions over a reasonable time 
period can give some i n s i g h t  in to  the tracking performance. I 

Pitch response, Figure 36, shows a - +1 degree variation i n  angle due to  the 
coupling from roll. For the i n i t i a l  approach cases, the variation was about 
- +0. 5 degree. More closely-spaced turns cause more pitch activity.  I 

Lateral tracking error ,  shown i n  Figure 37, i s  on the same order of magnitude 1 
as Case 1. Vertical errors  of Figure 38 re f lec t  the larger pitch variation 
and are about twice those i n  Case 1. 
ra te  (Figure 391, the excursions appear t o  be large. Actually, they are on 
the same order of magnitude as the descent of Case 1 a f t e r  the pitchover has 
occurred. 
i s  shown i n  Figure 40. 

Due t o  the expanded scale of the descent 

The ground track fo r  this case from the i n i t i a l  point t o  threshold 

Case 6. 

As i n  Case 1 ,  the e f fec t  of MLS noise i s  seen i n  increased vertical errors 
w i t h  about the same la te ra l  errors  (Figures 41-45). 
tracking error is about double tha t  of the no-noise case (+15 f t  vs +7 f t ) .  
This same level of MLS noise i s  used i n  the remaining cases. 

Dispersion i n  pitch 

- - 
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Cases 7 and 8. 

The same headwind and crosswind (scaled by a l t i t u d e )  as used i n  Case 3 was 

used i n  Case 7. 
t o  the wind f o r  Case 8. 

I n  addi t ion,  turbulence, as def ined i n  Figure 17, was added 

La te ra l  t rack ing e r ro rs  are compared f o r  these two cases i n  Figure 46. 

Although the shapes o f  these two curves are d i f f e r e n t  than the no-wind case 
(Case 51, the excursions are about the same. 
and 8 are compared i n  Figure 47. 
shows an increase i n  excursion o f  a factor  o f  3 t o  4. 

used i n  the s imulat ion were somewhat severe. Since the RMS l e v e l s  o f  the 
turbulence are funct ions o f  these steady wind leve ls ,  turbulence i s  a lso 

severe. Nevertheless, the expanded scale ground t rack shown i n  Figure 48 
shows a reasonable trace. 
a r e s t r i c t e d  area, which i s  located about 1500 f e e t  from l e g  4 ( the  l a s t  l e g  
before FAFl8). 

For  the v e r t i c a l  plane, Cases 7 

The steady wind values 
Here, the comparison t o  the no-wind case 

Case 8 resul ts  produced no problems i n  f l y i n g  near 

Case 9. 

Windshear components used f o r  t h i s  case are shown i n  Table 3. Pos i t i ve  values 
represent t a i l w i n d s  and crosswinds from the r i g h t .  
windshear i s  t o  appreciably increase the bank angle required f o r  the turns (up 

The l a t e r a l  t rack ing  error ,  Figure 50, 

i s  about the  same as Case 6. Ver t ica l  t rack ing e r r o r  (Figure 51) increased t o  

The main e f f e c t  o f  t h i s  

I 
I 
1 t o  25 degrees as shown i n  Figure 49). 

about 25 f e e t  dur ing the f i r s t  p a r t  o f  the approach, w i t h  an increase up t o  30 
feet  near the change t o  a headwind (between 300 and 400 f e e t  a l t i t u d e ) .  

increase represents a f a c t o r  of 2 as compared t o  the e r r o r  i n  Case 6. 

I 
This 

Case 10. 

This case represents a minimum-weight landing conf igurat ion.  
as Case 6 except f o r  the weight and speed d i f ferences (See Table 5). 
i n  Table 6, the e r r o r  a t  the 100 f o o t  a l t i t u d e  p o i n t  are the same as the  
fu l l -weight  case. 
seconds as compared t o  a 50 feet peak f o r  Case 6. 

It i s  the same 
As noted 

Peak e r r o r  (Figure 52) was s l i g h t l y  higher (200 f e e t )  a t  80 

I 
I 

I 
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F I XED BASE SIMULATOR CONS1 DERAT IONS 

A l o g i c a l  extension t o  the  cur ren t  MLS guidance system simulat ion studies i s  a 
man-in-the-loop, rea l - t ime s imulat ion evaluation. This task would invo lve  
tak ing  the algori thms developed dur ing the  present study and rev i s ing  them as 

necessary f o r  use i n  a real- t ime environinent. A fixed-base simulator t h a t  
includes MD-80 a u t o p i l o t  and Performance Management System (PMS) hardware i s  
avai  lab1 e f o r  t h i s  purpose. 
s imulat ion program need t o  be establ ished. 

In te r faces  between t h i s  hardware and the computer 

The f i r s t  step i n  i d e n t i f y i n g  these in te r faces  i s  t o  note what inputs  and 

outputs are associated w i t h  the algorithms. 
diagram containing a review o f  the major input /output  and computations 
performed by the l a t e r a l  computer program. 
the ve r t i ca l  guidance program. These tab les i nd i ca te  the basic s ignal  

generation and inputs  necessary f o r  t h e i r  computation. 

Table 7 i s  a s ignal  computation 

Table 8 i s  a s i m i l a r  diagram f o r  

F igure 53 i s  a s i m p l i f i e d  block diagram showing the interconnect ions between 

the MLS guidance computer and the  o ther  a i r c r a f t  systems. 
guidance functions w i l l  have t o  i n te r face  proper ly  w i th  the hardware t h a t  i s  
inc luded i n  the s imulator and w i t h  the  e x i s t i n g  software. 
i d e n t i f i e d  i n  the Recommendations sect ion t h a t  r e l a t e  t o  t h i s  i n te r fac ing  
fol low-on e f fo r t .  

The new MLS 

Tasks were 
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TABLE 1 - WASHINGTON NATIONAL R I V E R  WAYPOINTS 

X Y A1 t Turn Radius 

WAYPOINT NAME Ft .  Ft. F t .  F t .  

ENTRY 

CAB1 N 

WINDY 

KEYBR 

MEMBR 

FAFl8 

GPI l8  

-44603. 36527. 31 46. 9000. 

-40951. 26491. 31 46. 8000. 

-1 8426. 1501 4. 1353. 7500. 

-1 6425. 6990. 948. 6500. 

-1 0827. 401 4. 628. 7000. 

-5500. 0. 285. 7000. 

--- 0. 0. 0. 



TABLE 2 - TRANSFORMED R I V E R  WAYPOINTS 

WAYPOINT NUMBER x(  i y ( i J  h ( i s )  

F t .  Ft. Ft. 

1 

2 

3 

4 

5 

6 

7 

a 
9 

1ci 

1 1  

12 

13 

14 

-1 908.1 

-31 57.9 

-7370.5 

-1 0387. 

-1 131 4. 

-1 3870. 

-1 71 25. 

-1 7599. 

-21 471. 

-381 43. 

-42029. 

-43632. 

-46928. 

-48535. 

0. 

0. 

1409.5 

3682.4 

4272.7 

5631 .5 

9798.1 

11  698. 

16566. 

25060. 

29453. 

33860. 

381 55. 

59280. 

100. 

165.5 

402.39 

600.33 

657.98 

809.68 

1095.0 

1197.7 

1533. a 

2829.1 

3074. a 

251 4.4 

31 46.0 

31 46.0 
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TABLE 3 - VALUES FOR SIMULATED WINDSHEAR 

ATTITUDE T A I  LW I rJ D/HEADW I N D  

FT. KNOTS 

CROSSWIND 

KNOTS 

5000.00 

1000.00 

800.00 

600.00 

500.00 

400.00 

300.00 

200.00 

100.00 

0.00 

23.00 

23.00 

22.00 

20.00 

18.00 

12.00 

6.00 

-3.00 

-6.00 

-4.00 

28 

-26.00 

-26.00 

-25.00 

-24.00 

-23.00 

-1 7.00 

-1 2.00 

-4.00 

-2.00 

-2.00 



~. 

TABLE 4 - MLS NOISE MODELS (2a or 95% PROBABILITY) 

AZIMUTH EL E VAT I O N  DME 

I CAO 

VALUES 

REDUCED 

VALUES 

PFE = 0.104 DEG 

(+20 FT) 

CMN = 0.0548 DEG 

(+10.5 - FT) 

PFE = 0.0312 DEG 

(5 FT) 

CMN = 0.0208 DEG 

(+4 - FT) 

PRE = 0.133 DEG PFE = 100 FT 

(22 FT) 

CMN = 0.0663 DEG CMN = 60 FT 

(+1.0 - FT) 

PFE = 0.018 DEG 

(+0.30 - FT) 

CMN = 0.012 DEG 

(+0.20 - FT) 

PFE = PATH FOLLOWING ERROR 

CMN = CONTROL MOTION NOISE 

RUNWAY LENGTH = 10,000 FT 

PFE = 100 FT 

CMN = 60 FT 
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TABLE 5 - SIMULATED CASE CONFIGURATIONS 

SPEED WEIGHT MLS STEADY WIND 

CASE (KNOTS 1 ( L B )  NOISE WIND TURB SHEAR PATH 

1 140 1 32 , 000 NO NO NO NO 

2 YES 

3 YES I N I T I A L  

4 1 65/140 NO 

II I1 I1 i1 II 

I1 I1  I 1  11 11 

I 1  I 1  11 11 

I 1  5 140 NO 

6 140 YES 

7 YES 11 

8 YES F I N A L  

9 NO NO YES 

10 116 90,000 NO 

I1 11 II 

II I1 11 11 

II I 1  I 1  II 

11 I 1  I 1  II I 1  

I 1  I1  II 

I 1  II 11 
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TABLE 6 - TRACKING ERRORS AT 100 FT DECISION HEIGHT 

VERTICAL LATERAL SPEED 

ERROR ERROR ERROR 

CAS E FT FT KT 

5 2 

6 2 

7 12 

8 12  

9 20 

10 2 

31 

50 

50 

30 

10 

30 

50 

< 0.5 

< 0.5 

3 

9 

3 

< 0.5 



I TABLE 7 - LATERAL GUIDANCE SIGNAL COMPUTATION DIAGRAM 

I INPUTS OUTPUTS 

~ 

MLS Angles, Range : ~ A Z  Y BEL Y RDME .3 MLS Posi t ion Coordi nates : x; yyh yh; 

Waypoint Data: x, y 

Turn Radius: R Desired Course Angle: $D 

Leg Distance: D~~ 

Total Distance To GO: TDLG 

I n e r t i a l  Accelerat ion 

From Exi s t i n g  

F i l t e r s :  x,y 
.. .. 

32  

I ~ _ _ _  

3 f i l t e r e d  MLS Posi t ion and 
c c  A / \  

Date Signals: (xh,y;) ,(xmYym) 

V 
Ground Track Angle: JIG 

Transformed MLS Posi t ion:  xmYYm,hm 
A f i A  

Ground Speed: VG 

Course Deviat ion and Rate: A y , A j  

Ro l l  Steer ing Command : +STR 

D~~ Distance t o  Go: 



TABLE 8 - VERTICAL GUIDANCE SIGNAL COMPUTATION DIAGRAM 

INPUTS OUTPUTS 

D Waypoint Data: h,GS 

Leg D i  stance : 

Desi red A1 ti tude: h 

A1 ti tude Error:  Ah 
D~~ 

A l t i t u d e  Rate and 

A 
Accelerat ion From . .. 
E x i s t i n g  F i  1 t e r s  : hF , h  + A 

A l t i t u d e  Er ror  Rate: AL 

Pi tch  Steering Signal : e STR 
Ver t ica l  F1 i g h t  Path 

Angle: Y 

Pi tch  Steering Command: eCE 

I 
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Figure 1. Existing ILS Coverage 
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Figure 2. Extended Coverage Possible with MLS 
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\ \ 
Figure 3. MLS Approach Geometry 

Y 

\ 

Figure 4. Waypoints for Washington National River Approach 
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Y 

WP(i,-2) 

Figure 5. Waypoint Transformation Geometry 

Y 

WP(i ,- 2) 

XJi ,-1), YJi ,-l) 

APPROACH 
DIRECTION 

\ 

Figure 6. Lateral Guidance Geometry 
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ENTER 0 
YES 

DEFINE ALL CONSTANTS AND SET 
INITIAL CONDITIONS. COMPUTE: 
DESIRED COURSE ANGLE, EQUATION 
(10); LEG DISTANCES, EQUATION 
(16)-(17); AND THE TOTAL DISTANCE TO 
GO, EQUATION (20). 

COMPUTE: COMPLEMENTARY FILTER VARIABLES, 
EQUATION (21)-(24); GROUND TRACK ANGLE, EQUATION 
(25); CORRECTED AIRCRAFT POSITION FOR MLS 
ANTENNA LOCATION, EQUATION (26>(28); GROUND 
SPEED, EQUATION (29); AND DISTANCE TO NEXT 
WAYPOINT, EQUATION (30). 

CIRCULAR 

COMPUTE: LINEAR TRACKING ERROR, EQUATION (31); 
ERROR RATE, EQUATION (33); LINEAR STEERING 
SIGNAL, EQUATION (34); AND THE DISTANCE TO GO, 
EQUATION (35): 

SET TURN 
ANTICIPATION 

RETURN 

Figure 7. Lateral Guidance Flow Digram (Sheet 1) 
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P 
~~ 

COMPUTE: CIRCULAR TRACKING ERROR, EQUATION 
(36); ERROR RATE, EQUATION (38); CIRCULAR STEERING 
COMMAND, EQUATION (39); AND THE DISTANCE TO GO, 
EQUATION (41). 

RETURN 
OUT CHECK 

YES 

COMPUTE: TURN TERMINATION VARIABLES AS 
REQUIRED FOR THE FOLLOWING LOGIC FLOW 
TO DETERMINE SWITCHING TO THE LINEAR 
LEG. 

~ 

COMPUTE: TURN ANTICIPATION BASED ON A RAMP 
STEERING COMMAND. THIS COMMAND IS LIMITED TO 
THE NOMINAL BANK ANGLE BASED ON THE GROUND 
SPEED AND TURN RADIUS. 

STEERiNG SiGFiAi 
BASED ON LINEAR 
LEG 

- 

STEERING SIGNAL 
BASED ON 
CIRCULAR LEG 

4 

SET CIRCULAR - 
LEG FLAG 

SIGNAL FLAG 

~ ~ _ _ _ _ _ ~ ~  ~~ 

Figure 7. Laternal Guidance Flow Diagram (Sheet 2) 
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Y 

WP(i,- 1) 

APPROACH 
DIRECTION 

Figure 8. Lateral Tracking Error for Linear Leg 

DIRECTION 

Figure 9. Turn Anticipation Geometry 
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Y 
L 

\ 
APPROACH 
DIRECTION 

Figure 10. Lateral Tracking Error for Circular Leg 

Figure 11. Turn Termination Geometry 
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Figure 12. Vertical Tracking Error for First Glideslope 

* 
DISTANCE TO GO 

WF 9 

/ 

Figure 13. Vertical Tracking Error for Second Glideslope 
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7 

4 
Ah - G "4 

Az 1 
4 
h 

1 + 7s + 
+ 

7 I = 4.0SEC 
G,, = 0.0588 
G,, = 0.00294 
G,, = 0.294 

t 

Figure 14. Block Diagram of the Vertical Steering Algorithm 
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n ENTER 

DEFINE ALL CONSTANTS AND SET 
INITIAL CONDITIONS (FLAGS AND 
COMPLEMENTARY FILTER 
PARAMETERS). 

YES 

COMPUTE: COMPLEMENTARY FILTER VARIABLE, EQUATION 
(45); VERTICAL FLIGHT PATH ANGLE, EQUATION (48) 

Figure 15. Vertical Guidance Flow Diagram (Sheet 1) 
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COMPUTE: DESIRED ALTITUDE, EQUATION (42). m 
COMPUTE: SIGNAL BASED ON SECOND 
GLIDESLOPE FOR SWITCHING LOGIC. 

fiNO SECOND , 
GLIDESLOPE 

RESET PARAMETERS FOR CALCULATIONS USING 
SECOND GLIDESLOPE. COMPUTE: PREDICT 
TERM, EQUATION (49). 

COMPUTE: DESIRED ALTITUDE ON SECOND 
GLIDESLOPE, EQUATION (43). 

COMPUTE: ALTITUDE ERROR AND RATE, 
EQUATIONS (44) AND (46); PITCH STEERING 
SIGNALS, EQUATIONS (47), (a), AND (51). 

(I> RETURN 

Figure 15. Vertical Guidance Flow Diagram (Sheet 2) 
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AZIMUTH AND PITCH AND ROLL 
I-, ELEVATION ANGLES 1-1 STEERING 

SURFACE 

INNER 
LOOPS 

DY NAM ICs 

Figure 16. Block Diagram of MLS Pitch and Roll Guidance Systems 

WHIENOISE -1 I TURBUFNCE,KT 

UWN = 1.0 

FILTER PARAMETERS 

LONGITUDINAL LATERAL VERTICAL 

r(SEC) W N T A S  W N T A S  30N TAS 

.Im 0.15 I W, I 0.15 I wy I 1.5 

Figure 17. Turbulence Model Used in Simulation 

SHAPING FILTER -~ RECEIVER 
FILTER- 

AZIMUTH ELEVATION DME 

w I  = 0.001 RADlSEC 

uh = 0.16RADlSEC 
ut = 0.001 RADlSEC 

a h  = 0.34 RADlSEC 
w I  = 0.001 RADlSEC 

uh = 0.245 RADlSEC 

UWN = 0.064 uWN = 0.024 uWN = 154.7 
uREC = 0.02 DEG uREC = 0.0097 DEG UREC = 53.4 FT 

Figure 18. MLS Noise Model Used in Simulation (la or 68-Percent Probability) 
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:14 13 12 11 10 WAYPOINTS 
- 1 5 . 0 ~  

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 
TIME (SECONDS) 

Figure 19. Bank Angle, Case 1 (Initial Approach, Baseline) 
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Figure 20. Pitch Angle, Case 1 (Initial Approach, Baseline) 
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Figure 21. Lateral Tracking Error, Case 1 (Initial Approach, Baseline) 
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Figure 22. Vertical Tracking Error, Case 1 (Initial Approach Baseline) 
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Figure 23. Vertical Speed, Case 1 (Initial Approach Baseline) 
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Figure 24. Ground Track, Case 1 (Initial Approach Baseline) 
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Figure 25. Bank Angle, Case 2 (Initial Approach, MLS Noise) 
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Figure 27. Pitch Angle, Case 2 (Initial Approach, MLS Noise) 
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Figure 28. Vertical Tracking Error, Case 2 (Initial Approach, MLS Noise) 
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Figure 29. Vertical Speed, Case 2 (Initial Approach, MLS Noise) 
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Figure 30. Bank Angle, Case 3 (Initial Approach, Wind) 
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Figure 31. Lateral Tracking Error, Case 3 (Initial Approach, Wind) 
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Figure 32. Bank Angle, Case 4 (Initial Approach, Speed Change) 
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Figure 33. Lateral Tracking Error, Case 4 (Initial Approach, Speed Change) 
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Figure 34. Airspeed, Case 4 (Initial Approach, Speed Change) 
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Figure 35. Bank Angle, Case 5 (Final Approach, Baseline) 
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Figure 36. Pitch Angle, Case 5 (Final Approach, Baseline) 
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Figure 37. Lateral Tracking Error, Case 5 (Final Approach, Baseline) 

-8.0 1 
-10.0 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 
TIME (SECONDS) 

Figure 38. Vertical Tracking Error, Case 5 (Final Approach, Baseline) 
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Figure 39. Vertical Speed, Case 5 (Final Approach, Baseline) 
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Figure 40. Ground Track, Case 5 (Final Approach, Baseline) 
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Figure 41. Bank Angle, Case 6 (Final Approach, MLS Noise) 
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Figure 42. Lateral Tracking Error, Case 6 (Final Approach, MLS Noise) 
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Figure 43. Pitch Angle, Case 6 (Final Approach, MLS Noise) 

Figure 44. Vertical Tracking Error, Case 6 (Final Approach, MLS Noise) 
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Figure 45. Vertical Speed, Case 6 (Final Approach, MLS Noise) 
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Figure 4qA). Lateral Tracking Error, Case 7 (Final Approach, Wind) 
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Figure 46(B). Lateral Tracking Error, Case 8 (Final Approach, Turbulence) 
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Figure 47(A). Vertical Tracking Error, Case 7 (Final Approach, Turbluence) 
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Figure 47(B). Vertical Tracking Error, Case 8 (Final Approach, Turbulence) 
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Figure 48. Ground Track, Case 8 (Final Approach, Turbulence) 
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Figure 49. Bank Angle, Case 9 (Final Approach, Wind Shear) 
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Figure 51. Vertical Tracking Error, Case 9 (Final Approach, Wind Shear) 
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Figure 52. Lateral Tracking Error, Case 10 (Final Approach, Light Weight) 
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